

Reg.	No.			107	o :	H	81	M	w	×				100	×			-		×	N s	8.)	1 10

Fourth Semester B.Tech. Degree Examination, February 2015 (2008 Scheme) 08.403 - SIGNALS AND SYSTEMS (TA) (Special Supplementary)

Time: 3 Hours

Max.Marks: 100

PART-A

Answer all questions:

1. Determine the power of the signal $x(t) = 10 \sin st$.

Express the signal x(t) shown in figure (1) using the unit step function u(t).

- 3. Check whether the following discrete signals are periodic. Determine the period if the signal is periodic
 - a) $\cos 0.5\pi n$

- b) $e^{j\frac{\pi}{3}}$ n
- 4. Determine whether the discrete system represented by the impulse response given below is stable $h(n) = a^n u(n)$.
- 5. Show that the trigonometric Fourier series of an even periodic function f(t) consists of cosine terms only.
- 6. Compute the Fourier transform of the unit step function u(t).

- 7. Compute the DTFT of the signal $x[n] = a^n \{u[n] u[n 10]\}.$
- 8. Determine the Laplace transform and region of convergence of the function $x(t) = (e^{2t} 2e^{-t}) u(t)$.
- 9. Find the causal signal x[n] represented by the z transform $X(z) = \frac{z(2z-1)}{(z-1)(z+0.5)}$
- 10. Show that z transform is linear.

(10×4=40 Marks)

PART-F

Answer any two questions from each Module.

	Module – I	
11,	Determine whether the following discrete time systems is linear, shift invariant, causal, stable and invertible. a) $y[n] = x [-n]$ b) $y[n] = x[n] $	10
12.	Show that the output $y[n]$ of a linear shift invariant (LSI) system having unit sample response h [n] is given by the expression $y[n] = h[n]$. $x[n]$.	10
13.	Let $x(t) = \begin{cases} 1 - t , & \text{for } -1 \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$	
	a) Find $x(t) * x (t)$.	4
	b) Sketch x (-2t) and x (2 - t).	4
	c) Compute the energy of x (2t).	2
	Module – II	
14.	Consider a continuous time signal x (t) and its Fourier transform $X(e^{j\omega})$.	
	a) Show that the energy of $X(e^{j\omega})$ is equal to the energy of $x(t)$.	4

	c) Compute the energy of x (2t).	2
	Module – II	
14	4. Consider a continuous time signal x (t) and its Fourier transform $X(e^{j\omega})$.	
	a) Show that the energy of X ($e^{j \omega}$) is equal to the energy of x (t).	4
	b) If x (t) is a real signal, then X (e ^{jω}) is even symmetric.	3
	c) If x (t) is even symmetric, then X ($e^{j\omega}$) is real.	3
15	5. State and prove sampling theorem for band-limited signals.	10
18	6. a) Show that Discrete Time Fourier Transform (DTFT) is periodic and linear.	4

b) State and prove multiplication property of DTFT.

Module - III

17. a) Determine the z- transform of x (n)= $n^2u(n)$.

b) State and prove differentiation property of z-transform.

- 18. For a continuous time system with transfer function $H(s) = \frac{s+5}{s^2+5s+6}$, find the zero-state response for an input x (t) = e^{-3t} u(t). 10
- 19. a) Define:
 - i) Strict sense stationarity.
 - ii) Wide sense stationarity.
 - iii) Ergodicity.
 - b) State Wiener-Khinchin theorem.

